organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(3,4-Dimethoxybenzylidene)-4-methylaniline

Zhen-Jiang Li,^a* Li Gao,^a A-lan Meng^b and Jun-e Huang^a

^aCollege of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, People's Republic of China, and ^bCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China Correspondence e-mail: zjli126@126.com

Received 10 August 2007; accepted 6 September 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.063; wR factor = 0.229; data-to-parameter ratio = 17.7.

The title compound, $C_{16}H_{17}NO_2$, crystallizes with two independent molecules in the asymmetric unit. In these molecules, the two benzene rings form dihedral angles of 26.44 (15) and 35.97 (16)°. There are weak intermolecular C-H···O hydrogen-bonding interactions in the crystal structure.

Related literature

For related literature, see: Allen *et al.* (1987); Li *et al.* (2006); Tian *et al.* (2006).

Experimental

Crystal data

C ₁₆ H ₁₇ NO ₂	c = 13.716 (3) Å
$M_r = 255.31$	$\alpha = 67.84 \ (3)^{\circ}$
Triclinic, $P\overline{1}$	$\beta = 81.97 \ (3)^{\circ}$
$a = 9.777 (2) \text{ Å}_{1}$	$\gamma = 68.41 \ (3)^{\circ}$
b = 12.304 (3) Å	V = 1420.9 (5) Å ³

Z = 4Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

Data collection

Bruker P4 diffractometer Absorption correction: none 6427 measured reflections 6059 independent reflections 2536 reflections with $I > 2\sigma(I)$

Refinement $R[F^2 > 2\sigma(F^2)] = 0.063$ $wR(F^2) = 0.229$ S = 1.01

6059 reflections

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2A\cdotsO1^{i}$ $C17-H17A\cdotsO4^{ii}$	0.96	2.52	3.439 (4)	161
	0.96	2.51	3.459 (4)	169

T = 293 (2) K

 $R_{\rm int} = 0.018$

343 parameters

 $\Delta \rho_{\rm max} = 0.21 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min}$ = -0.22 e Å⁻³

 $0.54 \times 0.34 \times 0.18 \text{ mm}$

3 standard reflections

every 200 reflections

intensity decay: none

H-atom parameters constrained

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1999); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2373).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

- Li, D. Q., Zhou, J., Liu, X., Yuan, Y. Z., Luo, Z. H. & Zhang, Y. (2006). Chem. Res. Appl. 18, 207–210.
- Sheldrick, D. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Tian, H., Li, B., Huang, S. Y., Wang, L. S. & Zhu, W. J. (2006). *Chin. JMAP*, 23, 188–190.

Acta Cryst. (2007). E63, o4086 [doi:10.1107/S1600536807043784]

N-(3,4-Dimethoxybenzylidene)-4-methylaniline

Z.-J. Li, L. Gao, A. Meng and J. Huang

Comment

Schiff base compounds and its derivatives have broad application in biological activity of antibacterial drugs, anti-virus, and anti-cancer (Tian, *et al.*, 2006). Due to their important biological activities, these compounds have received a great deal of attention in connection with their syntheses and in the elucidation of their crystal structures. In search for new Schiff base compounds with higher biological activities, the title compound (I) was synthesized. We report herein its crystal structure.

The asymmetric unit of (I) contains two independent molecules (Fig. 1). In these molecules, the benzene rings A(C3—C8), B(C10—C15) and C(C19—C24), D(C26—C31) deviate only slightly from coplanarity with the dihedral angles of 26.44 (15) and 35.97 (16)°, respectively. The dihedral angles A/C and B/D are 11.42 (16) and 72.31 (15)°, respectively. In (I), all the bond lengths and angles are generally normal (Allen *et al.*, 1987). In the title molecule, the average C=N, C—C and C—O bond distances [1.274 (4), 1.507 (4) and 1.374 (3) Å, respectively] are also in good agreement with an earlier report (Li *et al.*, 2006). The torsion angles C10—N1=C9—C6 and C26—N2=C25—C21 are -177.7 (2)° and 178.0 (2) °, respectively.

There are some weak intermolecular C—H···O hydrogen bonding interactions in the crystal structure, providing stabilization (Table 1, Fig. 2).

Experimental

The title compound (I) was prepared by reaction of [(3,4-dimethoxy-benzylidene)-amino]-ethanol and (right) toluidine in ethanol at room temperature. Single crystals of the title compound suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement

All H atoms were placed in calculated positions, with C—H = 0.93–0.97 Å, and included in the final cycles of refinement using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$.

Figures

Fig. 1. View of the title compound (I), with displacement ellipsoids drawn at the 30% probability level.

N-(3,4-Dimethoxybenzylidene)-4-methylaniline

Crystal data	
C ₁₆ H ₁₇ NO ₂	Z = 4
$M_r = 255.31$	$F_{000} = 544$
Triclinic, PT	$D_{\rm x} = 1.194 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073$ Å
a = 9.777 (2) Å	Cell parameters from 2566 reflections
b = 12.304 (3) Å	$\theta = 1.6 - 27.0^{\circ}$
c = 13.716 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\alpha = 67.84 \ (3)^{\circ}$	T = 293 (2) K
$\beta = 81.97 \ (3)^{\circ}$	Slice, colourless
$\gamma = 68.41 \ (3)^{\circ}$	$0.54 \times 0.34 \times 0.18 \text{ mm}$
$V = 1420.9 (5) \text{ Å}^3$	

Data collection

Bruker P4 diffractometer	$R_{\rm int} = 0.018$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 27.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.6^{\circ}$
T = 293(2) K	$h = 0 \rightarrow 11$
ω scans	$k = -14 \rightarrow 14$
Absorption correction: none	$l = -16 \rightarrow 16$
6427 measured reflections	3 standard reflections
6059 independent reflections	every 200 reflections
2536 reflections with $I > 2\sigma(I)$	intensity decay: none

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.063$	H-atom parameters constrained
$wR(F^2) = 0.229$	$w = 1/[\sigma^2(F_o^2) + (0.1145P)^2 + 0.0112P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} < 0.001$
6059 reflections	$\Delta \rho_{max} = 0.21 \text{ e} \text{ Å}^{-3}$
343 parameters	$\Delta \rho_{\rm min} = -0.22 \ e \ {\rm \AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
O1	0.0106 (2)	0.25461 (19)	0.48495 (17)	0.0722 (6)
O2	0.1218 (2)	0.42907 (18)	0.42852 (17)	0.0717 (6)
N1	0.2567 (3)	-0.0024 (2)	0.24077 (19)	0.0627 (7)
C1	-0.0405 (4)	0.1520 (3)	0.5273 (3)	0.0725 (9)
H1B	-0.1079	0.1623	0.5838	0.109*
H1C	0.0414	0.0759	0.5534	0.109*
H1D	-0.0897	0.1484	0.4733	0.109*
C2	0.1898 (4)	0.5212 (3)	0.4088 (3)	0.0797 (10)
H2A	0.1461	0.5691	0.4536	0.120*
H2B	0.1753	0.5758	0.3365	0.120*
H2C	0.2932	0.4801	0.4233	0.120*
C3	0.1688 (3)	0.3528 (3)	0.3719 (2)	0.0593 (8)
C4	0.2673 (4)	0.3626 (3)	0.2896 (3)	0.0697 (9)
H4A	0.3061	0.4267	0.2682	0.084*
C5	0.3089 (4)	0.2773 (3)	0.2383 (2)	0.0706 (9)
H5A	0.3758	0.2848	0.1830	0.085*
C6	0.2528 (3)	0.1816 (3)	0.2678 (2)	0.0611 (8)
C7	0.1506 (3)	0.1716 (3)	0.3515 (2)	0.0584 (8)
H7A	0.1118	0.1077	0.3721	0.070*
C8	0.1082 (3)	0.2557 (3)	0.4025 (2)	0.0562 (7)
C9	0.3004 (3)	0.0904 (3)	0.2150 (2)	0.0650 (8)
H9A	0.3664	0.1007	0.1593	0.078*
C10	0.3127 (3)	-0.0892 (3)	0.1876 (2)	0.0555 (7)
C11	0.4502 (3)	-0.1165 (3)	0.1398 (2)	0.0644 (8)
H11A	0.5126	-0.0751	0.1405	0.077*
C12	0.4950 (3)	-0.2034 (3)	0.0918 (2)	0.0677 (9)
H12A	0.5875	-0.2200	0.0606	0.081*
C13	0.4047 (4)	-0.2682 (3)	0.0885 (2)	0.0650 (8)
C14	0.2682 (3)	-0.2403 (3)	0.1360 (2)	0.0670 (9)
H14A	0.2053	-0.2808	0.1344	0.080*
C15	0.2223 (3)	-0.1537 (3)	0.1862 (2)	0.0637 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H15A	0.1309	-0.1386	0.2190	0.076*
C16	0.4536 (5)	-0.3650 (3)	0.0369 (3)	0.0969 (12)
H16A	0.3779	-0.3998	0.0442	0.145*
H16B	0.5420	-0.4302	0.0700	0.145*
H16C	0.4722	-0.3267	-0.0365	0.145*
O3	0.5841 (2)	0.44440 (17)	0.40783 (16)	0.0687 (6)
O4	0.5223 (2)	0.24385 (17)	0.49333 (16)	0.0646 (6)
N2	0.7675 (3)	-0.0204 (2)	0.25563 (19)	0.0574 (6)
C17	0.5994 (5)	0.5632 (3)	0.3599 (3)	0.0958 (13)
H17A	0.5550	0.6120	0.4039	0.144*
H17B	0.5516	0.6050	0.2926	0.144*
H17C	0.7019	0.5533	0.3508	0.144*
C18	0.4808 (4)	0.1364 (2)	0.5426 (2)	0.0670 (9)
H18A	0.4218	0.1435	0.6036	0.100*
H18B	0.5673	0.0632	0.5635	0.100*
H18C	0.4250	0.1298	0.4941	0.100*
C19	0.6072 (3)	0.2496 (2)	0.4041 (2)	0.0522 (7)
C20	0.6583 (3)	0.1595 (2)	0.3597 (2)	0.0536 (7)
H20A	0.6346	0.0871	0.3901	0.064*
C21	0.7467 (3)	0.1750 (3)	0.2685 (2)	0.0562 (7)
C22	0.7822 (4)	0.2827 (3)	0.2256 (3)	0.0709 (9)
H22A	0.8426	0.2930	0.1666	0.085*
C23	0.7294 (4)	0.3750 (3)	0.2692 (2)	0.0695 (9)
H23A	0.7531	0.4473	0.2386	0.083*
C24	0.6415 (3)	0.3607 (3)	0.3581 (2)	0.0553 (7)
C25	0.7994 (3)	0.0788 (3)	0.2206 (2)	0.0628 (8)
H25A	0.8595	0.0908	0.1615	0.075*
C26	0.8191 (3)	-0.1072 (3)	0.2028 (2)	0.0521 (7)
C27	0.8563 (3)	-0.2335 (3)	0.2632 (2)	0.0600 (8)
H27A	0.8492	-0.2584	0.3361	0.072*
C28	0.9039 (3)	-0.3226 (3)	0.2161 (3)	0.0638 (8)
H28A	0.9299	-0.4068	0.2579	0.077*
C29	0.9134 (3)	-0.2882 (3)	0.1071 (3)	0.0637 (8)
C30	0.8748 (3)	-0.1628 (3)	0.0483 (3)	0.0700 (9)
H30A	0.8808	-0.1382	-0.0247	0.084*
C31	0.8277 (3)	-0.0725 (3)	0.0934 (2)	0.0616 (8)
H31A	0.8016	0.0115	0.0511	0.074*
C32	0.9638 (4)	-0.3868 (4)	0.0562 (3)	0.0951 (12)
H32A	0.9644	-0.3470	-0.0189	0.143*
H32B	0.8977	-0.4331	0.0753	0.143*
H32C	1.0612	-0.4426	0.0800	0.143*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0888 (16)	0.0727 (14)	0.0692 (15)	-0.0405 (12)	0.0212 (13)	-0.0353 (12)
O2	0.0855 (16)	0.0604 (12)	0.0766 (15)	-0.0309 (11)	0.0077 (13)	-0.0291 (12)
N1	0.0647 (16)	0.0733 (17)	0.0546 (16)	-0.0276 (14)	0.0007 (13)	-0.0239 (14)

C1	0.083 (2)	0.079 (2)	0.064 (2)	-0.0421 (19)	0.0124 (18)	-0.0262 (18)
C2	0.078 (2)	0.071 (2)	0.103 (3)	-0.0294 (18)	-0.006 (2)	-0.039 (2)
C3	0.065 (2)	0.0547 (18)	0.0549 (19)	-0.0182 (15)	-0.0088 (16)	-0.0155 (15)
C4	0.079 (2)	0.065 (2)	0.065 (2)	-0.0329 (17)	0.0000 (19)	-0.0145 (17)
C5	0.082 (2)	0.080 (2)	0.0513 (19)	-0.0373 (19)	0.0063 (17)	-0.0174 (17)
C6	0.069 (2)	0.0673 (19)	0.0460 (17)	-0.0223 (16)	-0.0066 (16)	-0.0175 (15)
C7	0.0627 (19)	0.0593 (18)	0.0534 (19)	-0.0239 (15)	-0.0067 (16)	-0.0149 (15)
C8	0.0638 (19)	0.0568 (17)	0.0465 (17)	-0.0194 (15)	-0.0010 (15)	-0.0177 (15)
С9	0.072 (2)	0.082 (2)	0.0430 (18)	-0.0313 (18)	0.0042 (16)	-0.0216 (17)
C10	0.0565 (19)	0.0662 (18)	0.0445 (17)	-0.0235 (15)	0.0003 (14)	-0.0180 (15)
C11	0.0546 (19)	0.080 (2)	0.061 (2)	-0.0280 (16)	0.0021 (16)	-0.0241 (17)
C12	0.0541 (19)	0.080(2)	0.063 (2)	-0.0200 (16)	0.0120 (16)	-0.0258 (18)
C13	0.078 (2)	0.071 (2)	0.0435 (17)	-0.0237 (18)	-0.0001 (17)	-0.0194 (16)
C14	0.067 (2)	0.084 (2)	0.061 (2)	-0.0358 (18)	0.0003 (17)	-0.0282 (18)
C15	0.0558 (18)	0.084 (2)	0.0563 (19)	-0.0318 (16)	0.0070 (15)	-0.0254 (17)
C16	0.119 (3)	0.102 (3)	0.077 (3)	-0.036 (2)	0.015 (2)	-0.046 (2)
O3	0.0907 (16)	0.0543 (12)	0.0674 (14)	-0.0357 (11)	0.0120 (12)	-0.0221 (11)
O4	0.0832 (15)	0.0566 (12)	0.0595 (14)	-0.0342 (11)	0.0207 (12)	-0.0237 (10)
N2	0.0576 (15)	0.0620 (15)	0.0515 (15)	-0.0195 (12)	0.0045 (12)	-0.0216 (13)
C17	0.172 (4)	0.069 (2)	0.064 (2)	-0.065 (2)	0.012 (2)	-0.0236 (18)
C18	0.085 (2)	0.0540 (18)	0.058 (2)	-0.0311 (16)	0.0137 (18)	-0.0136 (15)
C19	0.0545 (17)	0.0520 (16)	0.0482 (17)	-0.0224 (13)	0.0028 (14)	-0.0126 (14)
C20	0.0580 (18)	0.0483 (15)	0.0530 (18)	-0.0200 (13)	-0.0011 (15)	-0.0145 (14)
C21	0.0561 (18)	0.0637 (18)	0.0494 (17)	-0.0231 (15)	0.0018 (15)	-0.0187 (15)
C22	0.087 (2)	0.079 (2)	0.056 (2)	-0.0466 (19)	0.0202 (18)	-0.0237 (18)
C23	0.092 (2)	0.068 (2)	0.058 (2)	-0.0460 (19)	0.0091 (19)	-0.0188 (17)
C24	0.0635 (19)	0.0545 (17)	0.0502 (18)	-0.0257 (15)	-0.0024 (15)	-0.0151 (15)
C25	0.064 (2)	0.072 (2)	0.0532 (19)	-0.0241 (16)	0.0066 (16)	-0.0245 (17)
C26	0.0444 (16)	0.0606 (18)	0.0504 (17)	-0.0164 (13)	0.0037 (14)	-0.0214 (15)
C27	0.0542 (18)	0.074 (2)	0.0518 (18)	-0.0234 (15)	0.0014 (15)	-0.0211 (16)
C28	0.0553 (18)	0.0662 (19)	0.070 (2)	-0.0195 (15)	0.0021 (16)	-0.0259 (17)
C29	0.0544 (19)	0.082 (2)	0.067 (2)	-0.0250 (17)	0.0045 (17)	-0.0398 (19)
C30	0.070 (2)	0.091 (2)	0.053 (2)	-0.0255 (19)	-0.0013 (17)	-0.0310 (19)
C31	0.0617 (19)	0.0698 (19)	0.0503 (18)	-0.0208 (15)	-0.0022 (15)	-0.0192 (16)
C32	0.108 (3)	0.098 (3)	0.095 (3)	-0.033 (2)	0.015 (2)	-0.059 (2)
Geometric paran	neters (Å, °)					
01		1 374 (3)	03-02	4	1 356	(3)
01 - 01		1.374(3) 1 418(3)	03-01	7	1.550	(3)
$0^{2}-0^{3}$		1.410 (5)	04-C1	9	1 373	(3)
02 - 03		1.332(3) 1 440(3)	04 C1	8	1.373 (3)	
N1-C9		1.774 (4)	N2_C2	5	1.420 (<i>3</i>) 1.270 (2)	
N1-C10		1.271(1) 1 420 (3)	N2 C2	6	1.270(3)	
C1—H1B		0.9600	С17—Н	17A	0.9600)
C1—H1C		0.9600	С17—Н	17B	0.9600)
C1—H1D		0.9600	С17—Н	17C	0.9600)
C2—H2A		0.9600	С17 —Н	18A	0.9600)
C2—H2B		0.9600	С18—Н	18B	0.9600)
_						

C2—H2C	0.9600	C18—H18C	0.9600
C3—C4	1.377 (4)	C19—C20	1.366 (3)
С3—С8	1.424 (4)	C19—C24	1.416 (4)
C4—C5	1.387 (4)	C20—C21	1.410 (4)
C4—H4A	0.9300	C20—H20A	0.9300
C5—C6	1.381 (4)	C21—C22	1.384 (4)
C5—H5A	0.9300	C21—C25	1.464 (4)
C6—C7	1.412 (4)	C22—C23	1.382 (4)
С6—С9	1.461 (4)	C22—H22A	0.9300
С7—С8	1.372 (4)	C23—C24	1.382 (4)
С7—Н7А	0.9300	C23—H23A	0.9300
С9—Н9А	0.9300	C25—H25A	0.9300
C10-C11	1.391 (4)	C26—C27	1.389 (4)
C10—C15	1.394 (4)	C26—C31	1.396 (4)
C11—C12	1.370 (4)	C27—C28	1.382 (4)
C11—H11A	0.9300	C27—H27A	0.9300
C12—C13	1.405 (4)	C28—C29	1.392 (4)
C12—H12A	0.9300	C28—H28A	0.9300
C13—C14	1.383 (4)	C29—C30	1.375 (4)
C13—C16	1.507 (4)	C29—C32	1.518 (4)
C14—C15	1.388 (4)	C30—C31	1.376 (4)
C14—H14A	0.9300	C30—H30A	0.9300
C15—H15A	0.9300	C31—H31A	0.9300
C16—H16A	0.9600	C32—H32A	0.9600
C16—H16B	0.9600	С32—Н32В	0.9600
C16—H16C	0.9600	С32—Н32С	0.9600
C8—O1—C1	117.5 (2)	C24—O3—C17	118.5 (2)
C3—O2—C2	117.9 (3)	C19—O4—C18	117.4 (2)
C9—N1—C10	120.0 (3)	C25—N2—C26	120.0 (3)
O1—C1—H1B	109.5	O3—C17—H17A	109.5
O1—C1—H1C	109.5	O3—C17—H17B	109.5
H1B—C1—H1C	109.5	H17A—C17—H17B	109.5
O1—C1—H1D	109.5	O3—C17—H17C	109.5
H1B—C1—H1D	109.5	H17A—C17—H17C	109.5
H1C—C1—H1D	109.5	H17B—C17—H17C	109.5
O2—C2—H2A	109.5	O4—C18—H18A	109.5
O2—C2—H2B	109.5	O4—C18—H18B	109.5
H2A—C2—H2B	109.5	H18A—C18—H18B	109.5
O2—C2—H2C	109.5	O4—C18—H18C	109.5
H2A—C2—H2C	109.5	H18A—C18—H18C	109.5
H2B—C2—H2C	109.5	H18B—C18—H18C	109.5
O2—C3—C4	125.5 (3)	C20—C19—O4	125.7 (3)
O2—C3—C8	115.1 (3)	C20—C19—C24	120.1 (3)
C4—C3—C8	119.3 (3)	O4—C19—C24	114.2 (2)
C3—C4—C5	120.2 (3)	C19—C20—C21	120.7 (3)
C3—C4—H4A	119.9	C19—C20—H20A	119.7
C5—C4—H4A	119.9	C21—C20—H20A	119.7
C6—C5—C4	121.3 (3)	C22—C21—C20	118.6 (3)

C4—C5—H5A	119.4	C20—C21—C25	120.4 (3)
C5—C6—C7	118.9 (3)	C23—C22—C21	121.0 (3)
C5—C6—C9	120.7 (3)	C23—C22—H22A	119.5
C7—C6—C9	120.4 (3)	C21—C22—H22A	119.5
C8—C7—C6	120.4 (3)	C22—C23—C24	120.5 (3)
С8—С7—Н7А	119.8	С22—С23—Н23А	119.8
С6—С7—Н7А	119.8	C24—C23—H23A	119.8
C7—C8—O1	125.4 (3)	O3—C24—C23	125.7 (3)
C7—C8—C3	119.9 (3)	O3—C24—C19	115.3 (3)
O1—C8—C3	114.7 (3)	C23—C24—C19	119.0 (3)
N1—C9—C6	123.8 (3)	N2-C25-C21	123.4 (3)
N1—C9—H9A	118.1	N2—C25—H25A	118.3
С6—С9—Н9А	118.1	C21—C25—H25A	118.3
C11—C10—C15	118.2 (3)	C27—C26—C31	118.3 (3)
C11—C10—N1	125.5 (3)	C27—C26—N2	118.1 (3)
C15-C10-N1	116.3 (3)	C31—C26—N2	123.6 (3)
C12-C11-C10	121.0 (3)	C28—C27—C26	120.8 (3)
C12—C11—H11A	119.5	С28—С27—Н27А	119.6
C10-C11-H11A	119.5	С26—С27—Н27А	119.6
C11—C12—C13	121.6 (3)	C27—C28—C29	121.0 (3)
C11—C12—H12A	119.2	C27—C28—H28A	119.5
C13—C12—H12A	119.2	C29—C28—H28A	119.5
C14—C13—C12	117.0 (3)	C30—C29—C28	117.6 (3)
C14—C13—C16	121.0 (3)	C30—C29—C32	121.9 (3)
C12—C13—C16	122.0 (3)	C28—C29—C32	120.5 (3)
C13—C14—C15	121.9 (3)	C29—C30—C31	122.5 (3)
C13—C14—H14A	119.0	С29—С30—Н30А	118.8
C15—C14—H14A	119.0	C31—C30—H30A	118.8
C14—C15—C10	120.3 (3)	C30—C31—C26	119.9 (3)
C14—C15—H15A	119.9	C30—C31—H31A	120.1
C10—C15—H15A	119.9	C26—C31—H31A	120.1
C13—C16—H16A	109.5	С29—С32—Н32А	109.5
C13—C16—H16B	109.5	С29—С32—Н32В	109.5
H16A—C16—H16B	109.5	H32A—C32—H32B	109.5
C13—C16—H16C	109.5	C29—C32—H32C	109.5
H16A—C16—H16C	109.5	H32A—C32—H32C	109.5
H16B—C16—H16C	109.5	H32B—C32—H32C	109.5
C2—O2—C3—C4	-6.4 (4)	C18—O4—C19—C20	-1.6 (4)
C2—O2—C3—C8	173.8 (3)	C18—O4—C19—C24	178.6 (2)
O2—C3—C4—C5	179.1 (3)	O4—C19—C20—C21	-179.1 (3)
C8—C3—C4—C5	-1.1 (5)	C24—C19—C20—C21	0.6 (4)
C3—C4—C5—C6	0.3 (5)	C19—C20—C21—C22	0.9 (4)
C4—C5—C6—C7	0.4 (5)	C19—C20—C21—C25	-179.2 (3)
C4—C5—C6—C9	-178.4 (3)	C20—C21—C22—C23	-1.8 (5)
C5—C6—C7—C8	-0.1 (4)	C25—C21—C22—C23	178.3 (3)
C9—C6—C7—C8	178.6 (3)	C21—C22—C23—C24	1.1 (5)
C6—C7—C8—O1	-179.6 (3)	C17—O3—C24—C23	7.8 (4)
C6—C7—C8—C3	-0.8 (4)	C17—O3—C24—C19	-172.9 (3)
C1—O1—C8—C7	6.1 (4)	C22—C23—C24—O3	179.7 (3)

C1—O1—C8—C3	-172.8 (3)	C22—C23—C24—C19	0.4 (5)
O2—C3—C8—C7	-178.8 (2)	C20-C19-C24-O3	179.4 (2)
C4—C3—C8—C7	1.4 (4)	O4—C19—C24—O3	-0.8 (4)
O2—C3—C8—O1	0.2 (4)	C20-C19-C24-C23	-1.2 (4)
C4—C3—C8—O1	-179.6 (3)	O4—C19—C24—C23	178.5 (3)
C10—N1—C9—C6	-177.7 (2)	C26—N2—C25—C21	178.0 (2)
C5—C6—C9—N1	177.5 (3)	C22-C21-C25-N2	-178.5 (3)
C7—C6—C9—N1	-1.2 (5)	C20-C21-C25-N2	1.6 (4)
C9—N1—C10—C11	27.7 (4)	C25—N2—C26—C27	145.1 (3)
C9—N1—C10—C15	-154.0 (3)	C25—N2—C26—C31	-38.2 (4)
C15-C10-C11-C12	0.6 (4)	C31—C26—C27—C28	1.5 (4)
N1-C10-C11-C12	179.0 (3)	N2-C26-C27-C28	178.4 (3)
C10-C11-C12-C13	0.1 (5)	C26—C27—C28—C29	-1.1 (4)
C11-C12-C13-C14	0.0 (5)	C27—C28—C29—C30	0.5 (4)
C11-C12-C13-C16	-179.3 (3)	C27—C28—C29—C32	-179.2 (3)
C12-C13-C14-C15	-0.9 (5)	C28—C29—C30—C31	-0.2 (5)
C16-C13-C14-C15	178.4 (3)	C32—C29—C30—C31	179.4 (3)
C13-C14-C15-C10	1.7 (5)	C29—C30—C31—C26	0.6 (5)
C11—C10—C15—C14	-1.5 (4)	C27—C26—C31—C30	-1.2 (4)
N1-C10-C15-C14	-180.0 (3)	N2-C26-C31-C30	-177.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H····A	$D \cdots A$	D—H···A
C2—H2A···O1 ⁱ	0.96	2.52	3.439 (4)	161
C17—H17A····O4 ⁱⁱ	0.96	2.51	3.459 (4)	169
Symmetry codes: (i) $-x$, $-y+1$, $-z+1$; (ii) $-x+1$, $-y+1$, $-z+1$.				

Fig. 2

